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According to the Wewton and the Busemann fornulae Uthe

pressure acting on the forwafd facing part of the vody travelling
in a gas may be explicitly expressed in terms of geometrical
characteristics of the body surface.lhis enables to solve a
variety of extremal problems for body shapes with minimun drag
in steady motian.

in Ref.I bodies of revolution of minimum drag have becn
found using the Newton formula with additional regquirements that
the body base diameter and the vody lenght (or body surface area,
or body volume ) were given.

A number of papers (Ref.2-5) has been devoted to the more
complicated extremal problem of finding airfails and bodies o
revolution of minimum drag using the Busemann formula.

The present report consists of two paris.lThe first part
deals with statement and solution of extremal problem for
airfoils and bodi=: ¥ revolution with minimum drag using the
Busemann pressure law.lhe second part is devoted to the defermi-
nation of slender three-dimensional bodies with minimum drag using
the Hewton formula.

I. The detormination of airfoils and bodies of _

- e o - o b

papers
This is the revised aand improved text ol previosly published
by the authors (kef.2j;Ref .4 -Chap.Lli,Sect,5,kef.5).
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_pressure law,

Lt is well known that at high speeds the pressure drag of
vodies with unsymmetrical cross section may be lower than the
drag of bodies ol revolution having equal lenght and maximum

Cross section.B0 in xci',o 1t has been shown that the drag of an
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elliptical cone was less than the drag of an equivalent circular cone.
This has been confirmed later by calculations made using the Newton
pressure law and by experiments.

In particular the experiments carried ouf by authors with a set
of elliptical cones in a wind tunnel at ¥ Mach number 4 showed that
the drag of an elliptical cone decreases with increasing eccentricity
of its cross section.lt is known also (see Ret.7) that at large speed
the drag of a pyramidal body may be significantly less than the drag
of an equivalént circular cone.

Below we discuss the determination of three-~dimensional body
shapes of minimum drag using the Newton pressure law

C = Keod*(5, ) (2.1)

2
Here c;==q26%~7az%92bé/ is the pressure coefficent, K is a
proportionality factor , Z -normal unit vector, (/ ~tree strean
velocity vector.
Let us assume the bodyﬁurface in cylindrical coordinate system
Frg. 2.1)

CFrg. 2.
£, P, = with Z-axis in the flow directioh o be given by the

~ equation
VR OV7/3 | (2.2

If the lenght of the body is equal to unity and the function f(z) is
dimensionless one may put %ZO::/.

In accordance with (2.L) and (2.2) the vody drag coefiiciert
(pfovided ///.2)20 ) may be found to be given by the following
expression

a2 / 3
LK o [ e
c‘p - ;_5‘—.. Z(y) Zla 2 /e dy 63'3)

/0 2 /7“ E—z * & /({5)
Further we restrict the consideration to slender bodies only.

Than in Eq.(2.3) the term reka)‘v may be dropped out and hence
this equation can be simplified to the form

4 25

- K ; 3. &k

=5 /}/&)/ (z)/%-_;,l;u @)
"o 57+ G
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This expression for the drag enables one tqéplit the problem of
finding the three~dimensional body having minimum drag into scparate
problems of determining the optimal shapes of its meridional
contour and of its cross—sectional contour.

The optimum meridional contour for the Newton pressure law is
well known and in this case AIZ5/4.

Iln order to deterumine the cross-sectional contour one has Lo solve

the following variational problem.Among the curves ¢ = 54?) with

a finite number of first derivative dlscontinultfspoeﬁ%s 1t is

necessary to find the curve which corresponds to the lowest value of

the functional
N,
J
g2

zz

As additional requirements we prescribe the values of the

maximum cross section aeea

‘Si = _5/“/52(5’)0/5"

and of its characterlstlc lenght ¢, .
The extremals of this problem must satisfy the Euler .. equation
for the function

Zy 2z 2
\7:————-—;;-5—-7'-22
) //‘-ZE
Furthermore the Legendre' condition :Z;u><9 must be fulfilled
along the extremal and at the points oﬂgiscontinuity of the slope

the Weierstrass~brdmann'. conditions must be satisfied

(F- Z"%:‘)y—-o = (&~ z/gz;,)wo ) (32') = (&)

As. the function & does not contain the independent variable

@.5)

g#o

explicitly the corresponding Euler- . equation must be integrablé
_Ql_gug%ggtu -,
By simple calculatiohs we find the integral of this equation in

the following form.

V/f+3 ) (#7222 X7 + f) | (2.6)
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Here '1,17[Mﬂ z_;gz C ié the integration constant. The cquilion
( 2.6 ) splits 1nutwo nonreducible equations of fourth oruci wnd 1in
general it contains eight families of integral curves. Omitting Lhe
details of the qualitative analysis of this equation it umust be noted
Tthat any extremal curve with recited features cannot belong only
to one family of integral curves. Furthermore among eight families
mentioned aboye four families cannot be extremals.

Let us transform Ig ( 2.6 ) +to parametaric form by taking as

7

z
the parameter the quantity ¢ givemn by €= —% ( the index L will

72
4
be next omitted ). than the remalnlnb four families can be represen-

ted by following expressiohs

e . 2
&%= 1) —— O/§0=r‘é'/‘t§-/§
A7+ 1) 2280)

(=91 @.7)

tdense it :f;‘ollowgés immediately that if i=0 +than A>0 and
it i=f than A <O « Due to Legendre. condition the parameter
t must vary between O and 73 .
Integrating the Eqs. ( 2.7 ) with .2)() the solution in
parametric form is found to be . ‘ < f)
- G-t
J(/ff “23717 “"’é Y/ el )7/ éw’)ﬁ 2
If 2<0 , e correspond_’l.ngly Sr7voE PP )
oo 2 Gyt .9)
W EEE) e Ay A e

The expressn.ong ( 2 8 ) snd ( 2. 9 ) determlne only two iamllles

zz

of integral curves. The remaining two families may be obtained by
choosing +the minus sign in the second of Egs. ( 2.7 ).

he estimation of the angle f shows that its maximal value
is less than g . Hence the families of integral curves do not
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integral

contain any closed cuxrves and all &hewe curves lie within the exb
angle determined by @ ¢ < ¢ = @(t,)

Now let us consider the third fawmily of integral curves cor-
responding to ,/2>0 and to the minus sign in the second of Lgs.
( 2.7 ). Lt can be easily' seen that the variation of paraumeter r
from to to O gives Bhe curves of the third fawily lyivnd wibhin
the angle ¢ <@ <Ly,

Matching the curves of the first and of the third families
gives the integral curves in the interval O < ¢ S«?% .

Actually the extension of the first family curve results in
a curve symmetric to it with respect to the ray @ = % o In order
to extend the extremal curve for still larger angles we must agaln
use the curve of the tirst family and repeat the above mentioned
procedure, After a finite number of such steps we can obtain an
extremal curve filling up an arbitrary large angle. Lf the angle
25 is multiple to ¢,  than the extremal curve will bg be clo-
sed. It is easy to prove that in junction points corresponding to

T =0 and ¢=2¢, the slope of the curves is discontinuous.

Thus, in general the conditions ( 2.5 ) at those points will not
be fulfilled. But the simple analysis shows that the first condi-
tion ( 2.5 ) is identically fulfilled at any Jjunction point; the
second condition is satisfied only at points where ¢ = O, that is

at largest radius. If one choose the minimal radius as tvhe charac-

teristic lenght, than the variation of radius at =, would be
equal zero and the second condition ( 2.5 ) is superfluous. Similar-
ly, one can prove that the soiution given by bgs. ( 249 ) corres-
ponds to the case when the maximal radius is choosen as characterisg-—
tic lenght .

' Now we shall deduce the relations de'berxﬁining the constants

C) to and A . The requircuent for the extrewal to be closed
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gLves
2 @G-t = I (2./0)
a2 (/7,_ (R RCis V¢ 4(3rL, /W(//-ZZ) /L
Vi 2(/ tz)a 2 2)2

where »2 1is thﬁgumber of double segments which the extremal curve
consists of. The use of the isoperimetric condition and of the Eq.

( 2.8 ) gives

%
/ B~V 3 o
7/ $£%8 L2 Z/ YEAGrEY 2 V22 / 41‘2(3&‘
IGedsir sy ,\z(/ Chit (148 ﬁ ”* Zmﬁ)e)
Hememberlng that ze we find the third equatlon in the

form

—ZWC‘7~ZO/7(/7L%; 2(5*5.2)) @.r2)

21+ 8)°
The analysis of Egs. ( 2.10) - ( 2. 12 ) shows that they may

be satisfied 1f sz 1s sufficiently large. For fixed »2 the para-
metxers A and Z; can be found rrom Lgs., ( 2.I0 ) and ( 2. LI )

and the constant C —from Eq .( 2.I2 ) . Hense we can find an in-
finite set of extrémals each satisfying all ‘reguirements imposed

by the statement of the variational problem. The shape of the crosse

Sz

-section is wholly determined by the parameters /2 and E;é ’

4

the value of ¢ determines the size of the cross—section.

In accordance with Egs. ( 2.4 ) the drag of optimal bodies is

given by following exprossion

! G-t DLt (2
_ 5./ /3 4/7z” L 7 YatD) / -
. 7, =
5% s (e S M )

The above expressions for the solutlon of the varldtlonal pro-
blen arg rather complicated. Therefore let us consider the simplafed
expressions obtained in the limiting case Z;«I .

in this case lbigs. ( 2.8 ) = ( 2.13 ) may ve transformed to fol-
ld&ng simplified expressions

&

z FOR)  g= 2l r oS &2t

A1+ 7770 VI3 ¢ o ) Vir 5
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(2.1v)
s 2
2 /
4—3 alled /—O(d-s):/i——’_ A 2°Az L OWD)- 151
A+ P V2R ’7{3'0 (/,L Vire?) phee n2(1ie2})
)3 /72: .g"a’z e
// Z (/,L % ) ~0@)]
(7+ V72 )3 Vrred
A1l the integrals in kgs. ( 2..14 ) can be cxpressed as simple
tunctions.
The shape of the cross-section resulting from these equations
is given by

(2.75)
02 z ‘
ge_ &(1+77r%7) o = 7;//1—‘ [t~ bofor iii?)]  oOsixa,

7+ Yrr2?

The values of the parametres are determined by following equa-

7’}:[2-&(2 2] =

tions

0/
J—_[&//fzf //-Z,/ Zz, ]~ Sy . (2./6)
Y73 7~2,+ V72 +7//on2 neel(7+ V1+2))
‘Note thataligs. ( 2..5 ) is written in terms of the orginal
first of

dJ.mensional variables.

The drag coefficient in this limiting case can be expressed

in the form

@)

[ Yz, 112+ 7127 4
/4/’/ 02D o) =t o g BT
1H¥Ir2} T=4 213 Frpfez F)lz?

1he contaurs of the cross-section found using the above equa-

. . : Sy
tions tor »n = 10 and ,\= 15 and for several values of ;72 are

shown in Figs. 2.2 and 2.5%. Lt is seen from these figures that the

peaks forming the body surfaee elongate with increasihg value

zh'dx

of y02 * For the cases considered the value varies irom

zln;'n
about 2 to about 5. Thus the cross-section of the body likes a star.
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The cross sections for ~»n = 10 and i%é: 5,943 9,%4 are shown
in Fig. 2.4 and for s« = 12 and 5’—& - 5,94 ; 7,72 in Fig 2.5 .

The drag of these optimal three-dimensional bodies is found
to bé many times lower than the drag of the equivalent optimal
bodies of revolution ( having the same lenght and the same maximal
cross section ). 1t is easy to show using Egs. ( 2..3 ) that the
increasing number 2 of peaks reduces the drag and in the limit

/2 ~>» oo the drag falls to zero. Ih the Fig. 2.6 the dependece

C
of 2 on 3&2 and on the number 2 is illustrated.
o rev tAd

The statement that the drag of presented examples of optimal
threc—-dimensional bodies is twenty or more times less than the
drag of equivalent optimal bodies of revolution is of course too
optimistic. The Newtonian flow near the concave part ot the sur-
faee is physically not Jjustified, so the more accurate approach to
the problem taking in account the finite thickness of the gas layer
between the body surface and the sh@ick wave would lead tvo a not so
strong decreasing of the drag. it is obvious from physical reasons
that with » very large the actual drag ot the body would be
higher than the drag of the equivalent body of revolution.
The overall drag of bodies with great number of peaks and with

the S
large value of/parameter 2L will increase, also due to increa-

z9¢

sing skin-friction drag .

Hence the absolute minimum will apparently correspond to a
not to great number ol the peaks.

1t should be noted that in accordance with the Newtonian con-
cept the drag of the body remains wunaltered if the sectors which
the body consists of would be rearranged in other order. tence we
may construct a great number of various bodies of minimum drag from
the one original body. From mathematical point of view these bodies
will have contours with discontinious dependence of radius on angle,
from physical point of view they

will have additional surface
Declassified in Part - Sanitized Copy Approved for Release 2011/11/04 : CIA-RDP80T00246A019400190001-6
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of friction ..

| The above results permit easy to solve the variational problem
of determining the minimum drag body.with a plane side placed at
zero angle to the stream direction. The solution follows immediate~
ly from symmetry principle and for rn= 10 the corresponding cross-

section shape is shown in Fig. 2.7.
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COMMENTS ON THE PAPER entitled "The Determination of Body Shapes of

Minimum Drag Using the Newton and the Busemann Pressure ILaws" by

Ge Go Chernyi and A. L. Gonor, Moscow State University.

1. Professor Chernyl and Dr, Gonor have undertaken a difficult task,
that is, to extend the existing knowledge on the theory of optimum ﬁodies
from the case where the independent variable is one to the case in which
the independent variables are two, It is obvious that, if no simplifying
assumptions are introduced, the Euler equations of this problem would be
partial differential equations, However, by using the Newtonian pressure
law, the slender body hypothesis, and by restricting the analysis to the
class of homothetic bodies, the authors are able to reduce a problem in ‘
which the independent variables are two to two separate problems—-each
having a single independent variable, In other words, they are able to
split the problem of the optimum longitudinal contour from that of the
optimun transversal contour, This is a clever idea and the key point of

the paper, However, such an idea involves a heavy price in terms of the

" Declassified in Part - Sanitized Copy Approved for Release 2011/11/04 ;: CIA-RDP80T00246A019400190001-6
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physical hypotheses and, hence, the immediate engineering usefulness of
the paper,

20 The result that the absolute optimum body is one of zero pressure
drag is certainly startling, However, its formal derivation does not even
require the use of the formal methods of the Calculus of Variations and
can be obtained as follows, Consider a circle of radius r = ﬁt-t and cale-
culate the drag integral for such a circle, Next, consider a system of
variations &r which are periodic with respect to ¢ and such that &r/r << 1( Fa'% 1 )‘
Assume that the period is Ap = 2n/n where n' is the number of waves, Since
the average value of r is unchanged, the isoperimetric condition is still
satisfied. On the other hand, since r $k 0, the drag integral is smaller
than the drag integral pertaining to the circle. As n increases, the drag
integral decreases and, for n - =, tends to zero which is the result obtained
by Chernyi and Gonmore

3, In their paper, the authors state that the variational problem
admits an infinite number of extremal arcs each of which is associated with

a different number of segments of the starlike configuration and each of

which satisfies the Euler equations, the corner conditlons, and the Legendre

Declassified in Part - Sanitized Copy Approved for Release 2011/11/04 : CIA-RDP80T00246A019400190001-6
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condition, Since the absolute minimum for the drag is achieved when
n = », the following question arises: what is the meaning of the extremals

tha cwrves
aesociated with a finite number of n? In all probability, n = finite’are
extremals only with respect to a system of weak variations (Legendre con-
ditions) but not with reepect to a system of strong variations (Weierstrass
condition), However, it is probable that the curvesn X finite are extremal
with respect to strong variations if an additional inequality constraint is
imposed on the problem, that is, the constraint n < «o, where « is the upper,
bound to the number of segments composing the solutionm.

4, If the first integral of the problem of the transversal contour is

written in the form

PR ol 3 <R PR R (1)
(r® + 23)3

it becomes obvious why the optimum configuration is starlike., Since Eq. (1)
contains even powers of r and f', it is clear that) for every solution of the

form r(o) }thorc exists another solution of the form r(-¢). Also, for every

solution r(p), there exist several solutions of the form r(¢ + Const).

— Declassified in Part - Sanitized Copy Approved for Release 2011/11/04 : CIA-RDP80T00246A019400190001-6
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These two properties express the symmetry and the multiplicity of the so-
lution and immediately lead to the idea that the configuration is starlike

for n m finite,

S5¢ The first integral (1) can be rewrittem in the form
Af* + B + C =0 (2)

where A, B, C depend on r, A\*, C. This equation admits the solution

dar B 4+ - AAC
i A (3)

whose variables can be separated as follows

dop = tJ 24 dr (&)

B+ - guc

Hence, the integration of the equations governing the extremal arc can be
performed without recourse to the system of parametric representation em-
Ployed by the authors,

6. It is probable that only one of the two signs preceding W

is admissible, It is also probable that the Lagrange multiplier A* as well

as the constant C are simultaneously positive,
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7+ It is difficult to imagine that a body of finite volume has zere
drage Hence, one wonders whether the results of the paper by Chernyi and
Gonor could not be improved by a re-examination of the basic hypotheses,
in particular, that concerned with the neglect of friction drag and that
concerned with the pressure coefficient law,

8. 1In order to investigate to what extent, if any, the friction drag
influences the solution of the problem considered by Chernyi and Gonor,
the following analysis, based on direct methods, has been carried out at
the Boeing Scientific Research Laboratories. The writer has considered the
class of bodies (a) which are conical in the longitudinal sense and (b) which
in the transversal sense include a basic circle of radius Ty superimposed to
which are n symmetric arcs of a logarithmic spiral satisfying the equation

(F"(-L) )

T/r = % K where K is a constant, Assuming that the minigum radius r, and

the base area S are given, the analysis shows that the pressure drag Dp

decreases monotonically with the number of segments n tending to zero for

n - o, On the other hand, the friction drag D, increases monotonically with

4

the number of segments tending to o for n - », Consequently, the total
[ F l‘, '}) .

drag D = D, + Dp has a minimum with respect to n« As an example, if one

b4
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assumes r_ = 0,01, S = 0,07, and C, = 1,6 x 10, the optimum number of
segments is n = 8; the drag coefficient G is 62% of the drag coefficient
of the corresponding body of revolution cDR' As another example, if one
assumes r_ = 0,01, S = 0,07, and C, = 3.2 x 10 3, the optimum number of
segments is n == 6; the drag coefficient CD is 82% of the drag coefficient
of the corresponding body of revolution cDR’
9. Finally, a strong word of caution should be given with regard te
Newton's pressure coefficient law employed by Chernyi and Gonor. As far as
hypersonic aerodynamics is concerned, Newton's law must be regarded as an
empirical law primarily valid for convex bodies'only. Since Chernyi's optie
mal solutions are convex in the longitudinal sense but concave in the trans-
versal sense, it seems possible that the optimistic results of the authors
concerning drag reduction are mainly due to having applied an empirical law
beyond the boundaries for which this law is intended, Consequently, the
results of their paper should be interpreted as qualitative results confirme
ing a well-known trends that is, that bodies with a non-circular cross-

section may exhibit a smaller wave drag than bodies with a circular cross-

section, Quantitatively speaking, the authors' results are not valid for
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bodies with a large number of segments n, even though they may be valid for
bodies with a small number of segments.

000
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